Monday, December 12, 2016

Could technology replace pills and prescriptions?

   
Bioelectronic medicine may one day let us tap into our own nervous systems.
Imagine a day when you go to the doctor and, instead of a prescription on paper, you come out with a tiny device attached to your nervous system and possibly a new app on your phone. No more worrying about what time you have to take a pill – all you need to do is let technology do its business. Believe it or not, this day may not be that far away.
The human nervous system is the bioelectrical infrastructure of your body. Now imagine you could hack it. Welcome to the field of bioelectronic medicine. It’s an area that asks: what if, instead of using drugs to treat a condition, implants could control and tweak our body’s functions? What if, somewhere down the line, you could combat a tumour by harnessing your neural signals?

The idea may sound far-flung, but the research around it has roots in one of the most common bodily responses – one that most of us have likely experienced at one point or another.



Understanding inflammation

For Dr Kevin Tracey, based at the Feinstein Institute for Medical Research in New York, and one of the pioneers in this field, it all started with a desire to understand inflammation. For years, his team studied how and why the body reacts so dramatically to inflammatory conditions, such as rheumatoid arthritis and psoriasis, and why these diseases are so difficult to treat.
In patients with rheumatoid arthritis, for example, current treatments typically involve prescription drugs to block the production of a protein called tumour necrosis factor (or TNF for short), which the body generates in excess in case of inflammation. However, there are many problems with blocking TNF – not least the high price of treatment and potentially life-threatening side effects.

“Despite the importance of the TNF drugs, up to half of the patients are not optimally treated and are not cured,” says Tracey. “They continue to have pain and they need other options. We also know that these drugs are extremely expensive, and some patients are afraid of taking those drugs because they have significant side effects.” These include increased risk of cancer and cardiovascular diseases, to name just a few.

Tracey’s hope was to find potential new targets to develop more effective drugs, but instead they stumbled on a surprising connection: they realised that, in the case of inflammation, TNF production is controlled by the immune system, which in turn is controlled by the nervous system.

Finally, after 15 years of research, the team had their target. It wasn’t what they had anticipated, but the vagus nerve (which runs down our neck), turned out to be the link between the brain and the TNF response. “We mapped the neurological circuits that originate in the brain and control TNF production in the body,” explains Tracey. “We discovered that those circuits travel in the vagus nerve, one of the body's major nerves that connects the immune system to the brain.”
At this stage – comparing the brain to a computer – the idea was to “hack” the nervous system as an indirect way to control TNF production. Following this approach, they found out that it’s possible to control the activity of the vagus nerve by stimulating it with a low-voltage current, using a small implantable device inserted in the neck.


"You can change the frequency, you can change the amplitude"

“You can change the frequency, you can change the amplitude, you can change the voltage, and by changing those parameters, we’re able to stimulate the fibres that control TNF without a significant effect on heart rate. Patients can have their TNF blocked without experiencing stimulation of the other fibres that control other sites,” says Tracey.

Published only a few months ago, this study was a milestone, as one of the first clinical trials in humans to use small implantable devices instead of drugs to treat a condition. The results were positive and patients with rheumatoid arthritis saw their symptoms improve significantly during the treatment.
This astonishing finding was a breakthrough. For rheumatoid arthritis patients, the idea of bioelectronic medicine is no longer to control TNF production directly (with prescription anti-TNF drugs), but to target the neural circuits that control the part of the immune system that controls TNF production (with implantable devices). “Once you think in terms of neurons controlling immune cells, you can develop devices that use electrons to control the nerves, to control the immune cells, to control the TNF,” says Tracey.

No comments:

Post a Comment